

Prepared by Malcolm Chen

Why Al Accelerator

In 2012, AlexNet used two GPU as accelerators for training model and won the ImageNet contest. Since that, developers started to use AI Accelerators to reduce CPU workloads.

Why Intel® Solution

Advantages of Intel solution

- Cross platform: easy to be implemented in the existing projects
- Heterogeneous: integrate all Intel's accelerators
- Fast integration: easy to convert a trained model to Intel platform.
- Compact size: small in size and scalable.
- Power efficiency: FPGA with 40W TDP; VPUx8 with 25W TDP.
- Better performance/\$/W: Intel® solutions have better FPS/\$/W, compared to other solutions

Cross platform

Heterogeneous

Fast integration

Compact size & Power Efficiency

IEI Mustang Accelerators

- Intel® Vision Accelerator Design with Intel® Arria® 10 FPGA
- Intel[®] Movidius[™] VPU

Mustang-V100-MX4 **2019/08**

Mustang-MPCIE-MX2 **2019/07**

Mustang-M2AE-MX1 **2019/09**

Mustang-M2BM-MX2 **2019/09**

Launched

2019 Q3

Systems for Mustang Accelerators

Accelerator Platform	FPGA PCle Gen3x8	VPUx8 PCle Gen2x4	VPUx4 PCle Gen2x2	VPUx2 minipcie	VPUx2 M.2 B+M
TANK AIoT Dev. Kit Intel® SkyLake AI Dev. Kit					
FLEX-BX-200- Q370 Intel® Coffee Lake AI Modular Box PC	I OXO	n.en	FLEX		FLEX
ITG-100AI Intel® Atom™ x5-E3930					

Mustang-F100-A10

Accelerate To The Future

- Intel® Vision Accelerator Design with Intel® Arria® 10 FPGA
- A Perfect Choice for AI Deep Learning Inference Workloads

Mustang-F100-A10-Flexibility

Mustang-F100-A10-Flexibility

PE Array

ReLU

Crossbar

Config

Engine

MaxPool

Config

Engine

Flatten

SoftMax

PE Array

MaxPool

Crossbar

Permute

Reshape

Mustang-F100-A10 Latest algorithm

Long term project supported

Development period(Quarters)

=> FPGA bitstreams are updated and optimized in quarterly cadence.

New neural network layers & topologies announced rapidly.

Application Field for FPGA

Advantages of using FPGA-based acceleration card

- Low latency
- Continued improved performance
- Industrial grade
- 10-year longevity
- High resolution image (>1080P)

High speed Inspection

Driving safety

Real-time monitoring

Medical image AI

Mustang-V100-MX8

Accelerate To The Future

- Intel® Vision Accelerator Design with Intel® Movidius™ VPU
- A Perfect Choice for AI Deep Learning Inference Workloads

Mustang-V100-MX8- Multi-Tasks

Can execute multiple neural networks on the same card simultaneously.

Distributed computing:

Can assign VPU to specific video stream and network to achieve guaranteed throughput.

*LPR: License plate recognition

Mustang-V100-MX4

Compact Size

Features

Main Chip	4 x Intel® Movidius™ Myriad™ X MA2485 VPU				
Operating Systems	Ubuntu 16.04.3 LTS 64bit, CentOS 7.4 64bit, Windows® 10 64bit				
Dataplane Interface	PCIe Gen 2 x 2 Single slot				
Power Consumption	15W				
Cooling	Active Fan				
Dimensions	113 x 56 x 23 mm				

Mustang-MPCIE-MX2

Features

Main Chip	2x Intel® Movidius™ Myriad™ X MA2485 VPU			
Operating Systems	Ubuntu 16.04.3 LTS 64bit, CentOS 7.4 64bit, Windows® 10 64bit			
Dataplane Interface	minipcie			
Power Consumption	7.5W			
Cooling	Active Fan			
Dimensions	50.5 x 30 x 29.25 mm			

Low Power consumption

Features

Main Chip	4 x Intel® Movidius™ Myriad™ X MA2485 VPU			
Operating Systems	Ubuntu 16.04.3 LTS 64bit, CentOS 7.4 64bit, Windows® 10 64bit			
Dataplane Interface	M.2 B/M key 2280			
Power Consumption	15W			
Cooling	Active Fan			
Dimensions	113 x 56 x 23 mm			

Mustang-M2AE-MX1

Compact Size

Low Power consumption

Features

Main Chip	1x Intel® Movidius™ Myriad™ X MA2485 VPU				
Operating Systems	Ubuntu 16.04.3 LTS 64bit, CentOS 7.4 64bit, Windows® 10 64bit				
Dataplane Interface	M.2 A/E Key 2230				
Power Consumption	5W				
Cooling	Active Fan				
Dimensions	113 x 56 x 23 mm				

Mustang-Myriad-Scalability

Performance was increased by the factor of VPU quantity.

Application Field for VPU

Advantages of using VPU-based Acceleration card

- Low power consumption
- High scalability
- Multi-Tasks

- Compact size
- Longevity 5 years
- Medium & low resolution image(< 1080P)

Smart City

Self-check out

Digital Signage

Face recognition

Topology Support List

OpenVINO 2019 R1

	Mustang-F100-A10	Mustang-V100-MX8
AlexNet	V	V
CaffeNet		V
DenseNet-121, -161, -169, -201	V	V
GoogLeNet v1, v2, v3, v4	V	V
Inception v1, v2, v3, v4	V	V
LSTM: CTPN	V	V
MobileNet v1, v2; MobileNet SSD	V	V
MTCNN-o, -p, -r	V	V
ResNet-18, -50, -101, -152; ResNet v2-50, - 101, -152	V	V
ResNext-101		V
Sphereface	V	
SqueezeNet v1.0, v1.1	V	V
SSD MobileNet v1, v2	V	V
SSD GoogLeNet		
SSD Inception v2, v3	V	V
SSD ResNet	V	
SSD300, SSD512	V	V
U-Net	V	V
VGG16, VGG19	V	V
YoloTiny v1, v2, v3	V	V
Yolo v2, v3	V	V

Performance Benchmark (Perfcheck)

OpenVINO 2019 R1 perfcheck can help to evaluate performance.

Unit: FPS	CPU (Atom E3930)	Mustang- MPCIE-MX2	CPU(i7)	GPU(i7)	Mustang- V100-MX8	Mustang- F100-A10	Mustang- F100-A10
Floating Point	FP32	FP16	FP32	FP16	FP16	FP11	FP16
Alexnet	9.57	119.3	47.13	155.56	477.38	166.50	87.15
Googlenet/v1	5.11	182.4	79.98	85.27	729.64	575.01	173.46
Densenet/201	1.73	37.1	28.67	18.78	148.38	143.44	47.18
Inception- resnet/v2	0.61	14.2	10.66	10.91	56.64	53.43	10.24
Resnet/v1/50	2.35	60.3	40.29	49.49	241.01	271.11	64.14
Resnet/v1/101	1.16	30.0	20.01	29.25	120.04	168.55	35.87
Resnet/v1/152	0.77	19.9	13.35	20.81	79.66	119.62	24.19
Squeezenet/1.1	20.78	562.0	327.86	252.21	2247.99	2112.33	730.74
VGG19	0.46	17.2	6.51	18.95	68.67	48.58	14.06
Mobilenet-SSD	6.59	114.5	109.34	65.45	458.12	329.52	138.88
SSD512	-	2.5	1.63	2.82	9.81	12.89	3.70

Power Budget

Mustang Al Accelerators Decision Tree

What OpenVINO offers

Inference engine samples https://iei.pse.is/KW2D3

Pre-trained models https://iei.pse.is/JJZ7C

store-aisle-detection.mp4

Sample videos https://iei.pse.is/KLD43

Example

What Intel® offers

IoT DevCloud

Develop your computer vision applications using the Intel® DevCloud, which includes a preinstalled and preconfigured version of the Intel® Distribution of OpenVINO™ toolkit.

Access reference implementations and pretrained models to help explore real-world workloads and hardware acceleration solutions.

https://software.intel.com/e n-us/devcloud/edge

What IEI x QNAP offers

What IEI x QNAP offers

OWCT: OpenVINO Workflow Consolidation Tool

AI Model Upload

Model Optimize

Convert Format

Inference Engine

Follow us

iEi Live live.ieiworld.com

@IEIIntegration

@IEITaiwan

IEI Integration Corp.

@ieiworld

@ieismartcity